
Gyrokinetic Particle Codes at Exascale:
Challenges and Opportunities

Stéphane Ethier
Princeton Plasma Physics Laboratory

PASC16 Conference, Lausanne, Switzerland

June 8-10, 2016

Background

•  Simulations of fusion-relevant plasmas confined in a
torus-shaped magnetic bottle called “tokamak”

•  “Fusion-relevant” means plasma temperatures of 100
million+ degrees

•  Biggest challenge: ITER
•  Much larger than current

tokamaks
•  “Burning plasma”

experiments
•  Will require prediction of

each tokamak shot

•  Ultimate goal is “whole
device modeling” (WDM)

Whole device modeling is extremely
challenging
•  The important physics spans

huge range of spatial and
temporal scales

•  Overlap in scales often
means strong (simplified)
ordering not possible

•  Transport codes use fluid
approach with “reduced”
models to simulate full
discharge (few seconds)
–  Can miss some important

physics
–  Difficult to find enough

parallelism

10-6! 10-4! 10-2! 100! 102!

Spatial Scales (m)!
electron gyroradius!

debye length!

ion gyroradius!

tearing length!

skin depth! system size!

atomic mfp! electron-ion mfp!

10-10! 10-5! 100! 105!
Temporal Scales (s)!

electron gyroperiod! electron collision!
ion gyroperiod! Ion collision!

inverse electron plasma frequency! confinement!

Inverse ion plasma frequency! current diffusion!
pulse length!

The Gyrokinetic approach

•  Start in the middle and do
first principles calculation

•  Try to expand on “both
sides”

•  Kinetic approach naturally
capture the important
physics (e.g. turbulence)

•  The particle-in-cell algorithm
is currently the most
promising approach to
achieve exascale level
–  Lots of parallelism (200 billion

particles, 100 million grid
points to simulate ITER)

10-6! 10-4! 10-2! 100! 102!

Spatial Scales (m)!
electron gyroradius!

debye length!

ion gyroradius!

tearing length!

skin depth! system size!

atomic mfp! electron-ion mfp!

10-10! 10-5! 100! 105!
Temporal Scales (s)!

electron gyroperiod! electron collision!
ion gyroperiod! Ion collision!

inverse electron plasma frequency! confinement!

Inverse ion plasma frequency! current diffusion!
pulse length!

What is the “Gyrokinetic” approach anyway?

•  Fast helical motion of
charged particles in strong
magnetic field integrated
out in gyrokinetic equation
–  Helical motion replaced by

moving rings of dynamically
changing radius

–  No need to resolve the
helical (cyclotron) motion =
larger time step

•  Complicates charge
deposition step
–  Random access to memory

unless particles are sorted

ρ

Classic PIC 4-Point Average GK
(W.W. Lee, JCP 1987)

Charge Deposition Step (SCATTER operation)

The “low frequency” GKPIC method
•  Particles sample distribution function of “gyrocenters”
•  Interactions via a grid on which charges are accumulated

and fields are evaluated (PDE solve) (avoids N2 calc.)
•  100-1000X more particles than grid points
•  Grid resolution dictated by the gyroradius (Larmor radius)

The PIC Steps
•  “SCATTER”, or deposit,

charges on the grid (nearest
neighbors of 4 gyro points)

•  Solve Poisson equation
•  “GATHER” forces on each

gyrocenter particle
•  Move particles (PUSH)
•  Repeat…

GTS global delta-f GKPIC code in general
geometry for studying core turbulence in real
experiments
•  Efficient field-aligned grid
•  Magnetic coordinates
•  4-point average method for

charge deposition

•  Non-spectral Poisson solver
•  Energy and momentum

conserving guiding center
Lagrangian equations for
particles time-stepping

XGC1 full-F code for plasma edge turbulence
in diverted geometry, with X-point and wall
•  Comprehensive first

principles code
•  Move particles along

the characteristics
!ODE equation (RK4)

•  Solve the self-
consistent field ! PDE
equation solved using
PETSc (preconditioner
Hypre, KSP GMRES)

•  Kinetic ions + electrons
(real mass ratio)

•  Non spectral solver (FE
iterative multi-grid solver)

http://epsi.pppl.gov/

XGC1’s programming models
•  MPI + OpenMP + CUDA Fortran

for GPU
•  Top level = MPI

–  Toroidal domain decomposition
–  Multi-process particle distribution

within toroidal domains (require
careful load balance)

–  Grid-based solver splits matrices
between processes within each
toroidal domain (finite element
solver), implemented with PETSc
library

•  Fine-grained OpenMP at loop level
•  CUDA Fortran for electron time-

advance on GPU

Core	plasma	
(hot,	collisionless)	

Edge	region	
(large	gradients)	

X-point	(poloidal	
magne8c	field	vanishes)	

Wall	
boundary	

Separatrix	
(white	line)	

“Scrape-off	layer	
(cold,	collisional	plasma	
		neutral	atomic	physics)	

Divertor	
region	

Requirements for exascale

•  MASSIVE amount of parallelism
–  Billions of threads may be required to keep the hardware busy

•  Vectorize your loops
–  Vectorization is back and is necessary to achieve good loop-

level performance

•  Having to deal with several levels of memory hierarchy
–  The way data is accessed is critical

•  Avoid global synchronization
–  Having all execution threads (or MPI tasks) stop and wait for

each other is a bad idea

•  Limit I/O, deal with resiliency, etc.

At exascale, vectorization is important so
loop-level OpenMP parallelism is too “fine-
grained” "competes with vectorization

MPI_init

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

OpenMP
Loop

Start
threads
Merge
threads

•  Bring OpenMP to a higher (coarser) level and limit “serial”
regions. (At least bring to outer loop if nested loops)

•  Use vectorization at the (inner) loop-level (splitting a loop in
2 levels is also a possibility

Vectorization is
important even on
current systems and
certainly on the ones
coming up (Intel Xeon
Phi and GPUs)

Ways to implement coarse-level OpenMP
•  MPI style

!$omp parallel private(thid,num_th)
num_th=omp_get_num_threads()
thid=omp_get_thread_num()
… use “thid” to divide work and do lots of it
!$omp end parallel

•  Use OpenMP tasks!
!$omp parallel private(…)
!$omp master (or single)
 !$omp task
 ... Independent tasks
 !$omp end task
!$omp end master
!$omp end parallel

Master thread constructs a list
of tasks.
Threads will be assigned
tasks by scheduler
This allows for asynchronous
execution
 = good load balance

How to deal with heterogeneity and many
levels of memory hierarchy
•  Let the computer scientists figure it out!

–  Hide this complexity from the application scientists as much as
possible, while still providing a practical set of abstractions to
exploit data locality and key hardware features (would be ideal!)

–  Domain Specific Languages (DSLs) and autotuning are certainly
good approaches for dealing with widely used algorithms that are
well-known (PDE solvers, FFT spectral solvers, etc.)

–  Projects such as Kokkos (Sandia) and Raja (LLNL) are examples
–  At the very least we need efficient thread-safe libraries, in

particular, MPI library

•  In reality, we will probably need to do it ourselves
–  It’s all about the data structures and the way they are accessed
–  Need to worry about such things as “Array-of-Structures” (AoS)

and “Structures-of-Arrays” (SoA) and even AoSoA, etc.

Synchronization is bad! What to do

Specific example from global GK PIC code like XGC1:
•  Coherent access (or atomic updates) to large working sets

–  All threads within a process may need shared random read-modify-
write access to O(100MB), the size of a poloidal plane (PIC “scatter”
phase)

–  The biggest gap in existing models is the performance of fine-
grained (increment 2 doubles) atomics or transactions (the most
natural ways of expressing this). This performance deficiency
motivates complex decompositions or replications. The former
require inter-process communication. The latter require extra
memory. Both are unattractive in the manycore limit but that’s all
we have at the moment

How about inter-node communication?
Domain decomposition in the toroidal direction

•  The information about a particle must be moved along
with that particle when exiting a toroidal domain

•  This is done in a “ring-like” fashion with MPI_sendrecv
(“shift” step)

Moving particles between tasks:
MPI vs. PGAS Fortran Co-arrays (CAF)

Classical hybrid
MPI/OpenMP
programming model

The advanced hybrid PGAS/
OpenMP algorithm builds on the
strategy of communicating
threads, but allows ALL OpenMP
threads per team to make
communication calls to the
thread-safe PGAS communication
layer

Bulk data
transfer
by only 1
thread

Co-array Fortran constructs (to replace MPI)
included in the Fortran2008 standard

The declaration: real :: x(n)[p,q,*] means:
•  An array of length n is replicated across images.
•  The underlying system must build a map among these

arrays.
•  The logical coordinate system for images is a three

dimensional grid of size(p,q,r) where r=num_images()/
(pq)

•  Communicating between co-array objects
–  y(:) = x(:)[p]
–  myIndex(:) = index(:)
–  yourIndex(:) = index(:)[you]
–  x(:)[q] = x(:) + x(:)[p]

CAF algorithm for overlapping
communication with computation (Preissl, SC11)

Can use OMP TASK here!!!

Each OMP thread goes through a
subset of the particles and fills a
“small” buffers with the outgoing
particles until full.
At that point it uses Fortran
Co-arrays to transfer the particles
directly to the memory of its
destination after getting the address
with atomic fetch-and-add operation:
 AMO_AFADD()

It is hard to keep a billion threads busy at all
time. Can we deal with periods of idle cores?

•  In XGC1 runs we have >1000 more particles than
grid points

•  During computations involving only grid data (e.g. field
solver) it might not efficient to engage all the cores. On
heterogeneous systems, running each subroutine on
both CPU and GPU is very hard. What to do?
–  Do some I/O, such as checkpointing? (needed but not at every

time step)
–  Power them down to save energy? (that’s boring..)
–  Give them other tasks to do, such as diagnostics, analysis,

rendering for visualization!

GoldRush (SC13, Zheng et al.): Monitor resources
and run analyses on idle OpenMP cores

•  Harvest Idle Resources for In-
Situ Analytics

•  Dynamically predict idle
resource availability

•  Reduce interference with
execution throttling

•  Uses ADIOS FlexIO method
•  Overhead of GoldRush <

0.3%
Particle visualization (parallel coordinates)

Last comment

•  There is a huge amount of parallelism in particle-in-cell
codes, making them ideal for exascale

•  It won’t be easy though. There are many challenges
starting with the indirect addressing due to the particle-
grid gather-scatter operations.

•  Maybe we can get rid of the grid? …

Thank you…

